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Abstract. A nonequilibrium distribution of &er concentration across the sample caused 
by the Lorenz force is the origin of the Hall electric field. This distribution as well as the 
eleclrical and chemical potential profiles in the Hall direction are calculated for both three- 
and two-dimensional electron gases. In the three-dimensional w e  the deviation of electron 
concenlralion from its equilibrium value is rather small and located only near the sample edges. 
In the two-dimensional case the difference in electron concentrations at oppasite sample edges is 
much more considerable and does nal sahmke with the sample size At high magnetic field when 
the quantum Hall effect occurs, the difference in Fermi quasi-levels at the sample edges must 
be equal lo the Landau level separation times an integer in large intervals of applied voltage, 
which has been observed in the experiment. 

1. Introduction 

Most measurements of the Hall effect in semiconductors are performed in the open-circuit 
condition where the Hall electric field appears along the axis (say, y axis) normal to the 
electric current and the magnetic field. In real experiments the Hall electric potential 
$ ( y )  at opposite sample edges may differ by several volts and even more, which exceeds 
considerably the characteristic energy of carriers (thermal or Fermi energy). Of course, this 
does not mean that the carrier density n ( y )  is distributed in this potential field according 
to the Fermi function and, therefore, is extremely inhomogeneous. The explanation lies in 
the fact that the carrier distribution is governed not by the electrostatic but by the chemical 
potential 5 .  Most people considering the Hall effect theory simply suppose 5 and, hence, 
n to be coordinate-independent, which is definitely not the case. There must exist local 
deviations from charge neutrality since it is necessary to have some charges causing the 
Hall electric field. For the particular case of quantum Hall effect the principal possibility 
of non-zero 05 was mentioned in [1,2] but the effect was claimed to be non-essential. 

The aim of the present paper is to find the actual distribution of the carrier 
concentration, chemical and electrostatic potentials in a semiconductor while undertaking 
Hall measurements and to discuss the effects resulting from violation of local neueality. We 
shall show that under some circumstances these effects can be noticeable and interesting. 
Both three- and two-dimensional semiconductors with voltage V applied along the x axis 
and magnetic field B 11 z will be considered. 

Our theoretical analysis will be based on the equation 

expressing the absence of Hall current (uxz and uxry are the diagonal and non-diagonal 
components of the conductivity). This equation, combined with the Poisson equation, allows 
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us to find the space distribution of electrostatic and chemical potentials as well as of the 
carrier density. We shall assume that the sample length L in the direction of the current 
is much more than the width b in the Hall direction, which is typical for the samples for 
Hall measurements. In this case the above-mentioned concentration inhomogeneity far from 
the current contacts will depend only on the y coordinate and we simplify equation (1) by 
assuming ag/ax = 0 and a@/ax = -E, = V / L  = const.(T). 

2. Three-dimensional sample 

Consider first a threedimensional sample. We shall see that in this case the carrier density 
fluctuations n ( y )  -no (no is the equilibrium electron density equal to the non-compensated 
impurity concentration) are not large, which allows us to expand < in terms of (n -no): 

d< d( dn 
dy = (dn)o dy 

(( ... )O means the value calculated at n =no) and write equation (1) in the form 

We have taken into account that uxy = (pB/c)uxxl where p is the carrier mobility. By 
substitution of equation (2) into the Poisson equation 

d2q5/dy2 = (4na/c)[n(y)  -no] (3) 

d2n/dyz = l-’[n(y) -no] .  (4) 

where K is the dielectric constant, we obtain the final equation for n(y): 

Here I = [~(d</dn)0/4ae’]’/~ is the screening length. This equation must be solved with 
the boundary conditions E,( fb/2)  = 0 reflecting sample neutrality, which gives 

n ( y )  =no - An[sinh(y/l)/cosh(b/21)1 (5 )  

where 

An = (K/4Xd)(pB/C)Ex (6) 

is the characteristic difference of electron concentrations at opposite sample edges. It can be 
easily shown that this value of An corresponds to the following difference of the chemical 
potentials: 

A( = ( (b/2)  - <(-b/2) = -(epBl/c)E, N eVHl/b (7) 

where VH is the Hall voltage. 
The predicted difference of concentrations at opposite sample edges in three-dimensional 

samples has a relatively small amplitude (except for high-resistivity substances with small 
carrier concentration). We shall see, however, that for a two-dimensional electron gas (ZDEG) 
the effect is much more noticeable. 



Edge charges and the Hall effect in semiconductors 8965 

Figure 1. Schematic distribution of electric field (a) 
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3. Two-dimensional sample 

Consider first a structure with ZDEG in relatively IOW magnetic field when the Landau 
quantization can be ignored. "be schematic character of the Hall elechic field and charge 
distribution in the structure are shown in figure 1. 

As before, the problem requires simultaneous solution of the continuity equation (1) (or 
(2)) and the Poisson (in this case Laplace) equation. However, for 2DEG the problem is much 
more complicated since the Hall potential distribution is now essential non-one-dimensional. 
By analogy with the theory of screening in ZDEG [3,4], one must solve the Laplace equation 
a2+/ay2 + a2+/azz = 0 in the half-space z > 0 with the boundary conditions 

(a+/az)(Y, 0) = (2ne/h-)[n(y) -no]. (8) 

(Note that here and further n represents the concentration per unit area and, hence, has 
different dimensionality than in section 2.) Assuming +(O, 0) = 0, we obtain by integrating 
equation (2) that 

+cV, 0)  - ( ~ B / c ) & y  = (l/e)(dS/dn)o[n(y) - no1 (9) 

which, after substituting into equation (8), gives eventually the boundary conditions for +: 

Here 12 = h-(d</dn)o/(2rre2) is the two-dimensional screening length. For a degenerate 
ZDEG 12 is equal to half of the effective Bohr radius ae, and expressions (9) and (IO) are 
valid not only for small but for any An, which results from the constant density of states 
in ZDEG. 

The Laplace equation with the boundary condition (10) resembles that of the theory of 
contact phenomena in ZDEG [4] and some conclusions can be made a priori by analogy. 
The screening capability of ZDEG is much weaker than in the bulk sample and any charge 
inhomogeneity will decrease very smoothly with the logarithmic divergence of the total 
screening charge. As a result, rather large effects can be observed even for samples with 
b >> 12. 
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0 2 6 a 10  Y/l,  
Figure 2. Coordinate dependence of the dimensionless charge densifi v (lefl scale) and the 
dimcnsionless Hall potential $ (right scale) in 2DEG with f i  = bill = 20. The broken lines 
show lhese values in the absence of elecvostatk effects (12 -, 0). 

The equation cannot be solved analytically but can be mnsformed to an integral equation 
more convenient for numerical solution. We shall operate in terms of dimensionless units: 

In these units the solution of the Laplace equation with the boundary condition (8) is 

where ,9 = 6 /12 ,  
Assuming z = 0 and substituting equation (11) into equation (10) we obtain 

After integration over A we obtain the final form of the integral equation: 

This equation can be easily solved numerically by iteration, which gives us the concentration 
distribution along the Hall direction for 2DEG stripes of different widths (different B ) .  After 
U(() is found, the potential distribution q( f )  and the Hall voltage @(,9/2)  - @(-,9/2) are 
determined by equation (11). Some of the final results aTe shown in figures 2 and 3. 
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Figure 3. Dependence of the dimensionless concentration difference ar opposite edges A" = 
v ( - 8 / 2 )  - v ( 8 / 2 )  On the sample width. The broken line shows lhe dependence A" - b'12, 

In figure 2 the distributions of the electron concentration and the electrostatic potential 
are shown for a ZDEG structure with width considerably exceeding a ~ ,  namely b = 2012. 
Noticeable deviations from neutrality are seen at fairly large distances from the sample 
edges whereas the Hall field even changes sign near the edges. Figure 3 demonstrates that, 
contrary to the three-dimensional case, the difference in electron concentrations at opposite 
edges does not saturate at large b, increasing approximately - b1I2. To explain this fact, 
note that far from the sample edge we can neglect the diffusion current (the first term on the 
right-hand side of equation (2)). In this approximation the function @(c) is linear whereas 
the charge density diverges near the edge: 

49 = -D/(B2/4 - c2)1/21 (14) 

(see e.g. [5]).  These dependences are shown in figure 2 by the broken lines. The 
diffusion term will provide an effective screening restricting the concentration increase 
at distance - 12 from the edges. As a result, the charge density near the edge is of order 
( b / 1 2 ) ' 1 2 ( ~ ~ B E , / 2 a e c ) .  

4. Quantum Hall effect 

The effects described may play an important role also in the conditions of the quantum Hall 
effect. This case is characterized by the same geometry as shown in figure 1 and by the 
same boundary condition (8) to the Laplace equation, but the relation between n and <, and 
hence the final result, is rather different. Owing to the stepwise character of the n versus { 
dependence, the sample in the y direction will be divided into two types of regions: 

(i) 'Metal' regions with < coinciding with some Landau level hw,(N + 1/2) (wc = 
e B / m c ) .  In these regions V< = 0 and, according to equation ( I ) .  



8968 A Shik 

/ 
: 0  

Figure 4. Schematic coordinate dependence 
of the electrostatic potential (curve I), chem. 
ical potential (curve 2) and non-compensated 
cleclmn density (curve 3) under quantum 
Hall conditions. ( a )  Non-integer equilib- 
rium filling factor: no = yl(N t y ) .  <o = 
fiok(N + I J2). (b)  Integer filling factor: 
no = yl(N + I ) .  {o = h , ( N  + 112 + y ‘ )  
where 0 < y ,  y’ < 1. Letters M and D 
note ‘metal‘ and ‘diclectric’ reeions. res~ec- 

: /  M 

f i 4 +] tively. Broken lines correspond to the linear 
b12-6’ 

Y 
b12 dependence @ ( y )  = -EHY. 

(ii) ‘Dielectric’ regions with 5 lying in a gap between Landau level and cxXx = 0. These 
regions are characterized by constant electron concentration and hence 

(a@/a,)(r, 0) = const. (16) 

A similar picture has already been discussed in the theory of contact phenomena [a. 61. 
However, an important distinction must be pointed out. In the theory of contact phenomena, 
electrons are in equilibrium and V< = eV@. In our case the functions {(y) and e@(y )  are 
not equal and must be found separately. 

Two qualitatively different situations are to be considered depending on the equilibrium 
Fermi-level position CO. 

Let us discuss first the situation of non-integer filling factor when f io , (N + 1/2) 
(figure 4(a)). In this case the central part of the sample will be ‘metal’ with a homogeneous 
electric field (15). But this cannot be the case across the whole sample since it would require 
infinite charge density near the edges (equation (14)t). Therefore, for any applied voltage 

t Formally this corresponds lo the results of the previous section where, owing to infinite density of states at the 
Landau lwei. 11 = 0. 
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there will be ‘dielectric’ shipes near the edges. To estimate the width of these stripes 6, 
we use equation (14): 6 can be determined as the value of (bj2 - y )  where the surface 
charge density is equal to the concentration of electrons (or vacant places) at the Landau 
level. This concentration is of order uo E eBj2xhc and hence 

616 [(KhC/e2)(EH/B)I2. (17) 

For any reasonable values of EH and B corresponding to the quantum Hall effect, the 
right-hand side of equation (17) is much less than unity. The exact distributions of electron 
density, electrical and chemical potential in the sample are calculated in appendix 1 and 
shown schematically in figure 4(a).  A similar non-monotonic @ ( y )  dependence has already 
been obtained by numerical calculations in [7,8]. 

It is interesting to note that the total charge concentrated in half OF the ‘metal’ region 
is of order KEHb whereas the charge in the edge ‘dielectric’ stripe has much smaller value 

The arguments given above demonstrate that even at low current (small EH)  the electron 
concentrations at opposite Hall edges differ by the finite value: n(b/2) - n(-b/2) = vo 5 
eB/2nhc. 

Our conclusions are adequate for not very large EH.  If the current (and hence E H )  is 
large enough, the chemical potential { varying at the length 6 may reach the next Landau 
level, causing one more ‘metal’ stripe in the sample. In this case n(b/2)-n(-b/2) becomes 
equal to 2u0 rather than uo. Let us estimate the corresponding critical value of EH. It can be 
shown that <(b/2)  - <O - eEHS. An additional stripe appears when this difference exceeds 
hw,, which, together with equation (17), gives us 

(E& - B(e4/hc3KZmb)113. (18) 

Further increase in EH will cause the appearance of additional ‘metal’ stripes followed by 
new jumps in n(b/2) - n( -b /2 ) .  

If CO lies in a gap between Landau levels, 50 = hw,(N+ 1/2+ y’) with 0 c y‘ < 1, the 
situation is rather different (figure 4(b)). At low currents when eVH is less than hoc, there 
are no delocalized electrons at the Fermi level. In this case formally lz = CO and screening 
is provided only by the deformation of Landau wavefunctions [ 5 ] ,  which is beyond our 
approach based on the local connection between electron density and the potential. 

At higher currents the chemical potential level near one or both edges begins to be pinned 
to a Landau level and the local filling factor acquires a non-integer value (qualitatively this 
fact has already been pointed out [9]). These ‘metal’ regions provide effective screening 
and change the potential distribution drastically compared to the low-current case. Note 
that, as in the previous case, there must also exist narrow ‘dielectric’ regions near the edges 
(see appendix 2 and figure 4(6)). 

Calculations of appendix 2 show that @ ( y )  in the neutral central part of the sample is 
given by the formula 

eVo6 - KE~b(8 /6 ) ’ / ’ .  

where 6‘ is the width of edge ‘metal‘ stripes assumed to be much less than 6/2. In particular, 
at the boundary between ‘dielectric’ and ‘metal’ regions 
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To determine the unknown value S', we note that, at the point y = b/2 - S', C must 
coincide with a Landau level and hence 5 -CO must be equal to hw,(l - y ' )  (or to -hw,y' 
at the opposite edge). Taking account of equation (A5). this gives us the equation 

(we have assumed y' = 0.5). Equation (21) has solutions compatible with our assumption 
6' (< b in a rather narrow interval of currents (e.g. 8' c O.lb only for hw, c eEHb c 2hw,). 
This means that soon after eEHb exceeds hwe, the 'metal' region covers a considerable part 
of a sample. As a result, we come to the situation similar to that of non-integral filling 
factor. The only difference is that n(bj2) - n(-b/2) is equal to 2u0 rather than uo. 

So, in the conditions of quantum Hall effect there is a large interval of Hall fields, 
ho,/eb < EH < ( E H ) ~ , ,  where the electron concentrations at opposite sample edges differ 
by a constant value vo times an integer. 

5. hfos structures 

The results presented can be directly applied to such types of two-dimensional structures 
as heterostructures and thin films. In MOS smctures the problem is more complicated due 
to addilional screening caused by the metal gate. Formally this means that the Laplace 
equation must be provided by an additional boundary condition: @ = const at the plane 
z = d,  where d is the oxide thickness. 

The presence of the metal gate will result in additional decrease of A$ = $(b /2 )  - 
@(-b/2). For a hypothetical MOS structure with extremely thin dielectric d << aB, A@ will 
be - ae/d times less than without the gate. At the same time A1 will increase considerably 
and we may expect the difference An to be higher than predicted in the previous sections. 

So, MOS structures and heterosmctures with the same 2DEG conductivity at the same 
current will have different Hall electric fields and different induced electron density 
gradients. As a result, the breakdown of the quantum Hall effect, regardless of its exact 
physical nature, may differ in these structures. 

6. Summary 

In summary, we have shown that electrostatic effects may disturb the commonly used picture 
of the Hall effect, causing inhomogeneity in the space distributions of Hall electric field 
and carrier concentration, especially in structures with ZDEG. 

These effects decrease the electrostatic potential difference between the sample edges 
@ ( b / 2 )  - @(-b/2). At first glance, this must decrease the measured value of Hall voltage 
and hence of the Hall constant R H ,  causing the devitation of the latter from the classical 
value (noec)-' even in the absence of quantum Hall effect. It is not the case, however, 
since the measured Hall voltage is determined by difference in electrochemical potentials 
@ - { / e  rather than in electrostatic ones (see e.g. [I]), and the decrease in A@ is exactly 
compensated by the appearance of A{ caused by An. 

The effect can be discovered by direct measurements of the concentration difference at 
opposite sample edges An. In the classical case An is proportional to the current through 
the sample j ,  whereas in the quantum case An N const(j) = w N ( N  = 1,2, ...) for a wide 
interval of j .  This value is of order of 10" cm-l for typical B used in the measurement of 
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the quantum Hall effect. This is a fairly large quantity that can be discovered in experiments 
allowing local determination of the electron concentration in different parts of the sample. 

One of these experiments has already been performed [lo]. The conductivity changes 
induced by a focused flux of non-equilibrium phonons in ZDEG in high magnetic field were 
investigated. This effect has an oscillating B dependence similar to that of the Shubnikov- 
de Haas effect, but the phase and even frequency of oscillations determined by the electron 
concentrations (chemical potentials) differ at opposite edges of the sample. Further analysis 
showed [ 111 that the phenomenon was connected not with inherent sample inhomogeneity 
but with the Hall effect that resulted from the changing sign of An with reversing current 
or magnetic field. The difference in local values of F at opposite sample edges appeared to 
be just of order fio,, in accordance with the present theory. 
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Appendix 1. 

Consider for simplicity the case of half-filled Landau level. In this case the surface charge 
density in the edge stripes is &evo/2 and the potential distribution @ ( y )  is an odd function. 
It is to be determined from the Laplace equation with the boundary conditions 

@(Y.O)=-EHY O < Y  < ( b / 2 - 6 )  

a$(Y, o)/a@ = - R V ~ / K  (b /2  - 6) < y < bj2  (AI) 

a m  oust = o Y =. b/2. 
This equation can be transformed into the integral equation for charge density u ( y )  in the 
'metal' region IyI < (b /2  - 6 ) :  

e vo b2/4 - y 2  b/2-S U (y ' )  dy' 
( ( b / 2  - 6)' - Y 2 )  - l - b / 2  Y' - Y 

EH = - log 
K 

where the integral should be understood as the principal value. 
Equation (A2) has the following solution (see e.g. [121): 

(A3) 

The unknown parameter 8 can be found from the condition that (A3) has no signularity 

-1  
%[(b/2 - 8)' - Y ~ ] ' / ~  U(Y) = 

xlog 1 +  
b8 - 82 ) [ (b /2  - S)2 - ( (b/2 - 8)z - t2 (f - Y )  

at y = b/2  - 6. For 6 <( b this gives 

8 = b(KE~/4eVo)' (A41 
in accordance with the qualitative estimate (17). 

Knowledge of the charge distribution in the whole sample allows calculation of the 
electric potential @ ( y )  by direct integration and then the chemical potential [ ( y )  may be 
found from the relation 

( A 3  e$(Y) - C(Y) 4- Ib = -eEHY. 



8972 A Shik 

Appendix 2. 

If < lies midway between Landau levels, the potential distribution @ ( y )  is, as before, 
antisymmetric. It is caused by some charge distribution o ( y )  in the 'metal' stripe 
b / 2  - 6' e y e b / 2  and the oppositely charged stripe -b /2  < y e -b/2 + 6'. The 
electric field inside these stripes is homogeneous and equal to E H ,  which gives us the 
integal equation for o ( y ) :  

For 6' < b / 2  we may replace y f Z  - yz  by bfy' - y )  and solve the equation in a similar way 
as (A2): 

K EH y+c 
2 r  [ ( ~ - b / 2 + S ' ) ( b / 2 - y ) 1 ' / ~ '  

o ( y )  = -- 

The constant C is determined from the condition that equation (A7) has no singularity at 
the inner boundary of the stripe ( y  = b / 2  - 6') which gives eventually 

KEH ( y - b/2  i- 6()1'2 
o ( y )  = -- 

21r b / 2 -  y 

The expression (AS) diverges at y = 612. This singularity is suppressed by formation of 
narrow 'dielectric' stripes with U = &evo/2 near the sample edges. The situation is similar 
to the case CO e f t w , ( N  + 112) and, as has already been shown, the width and total charge 
of these stripes are very small. So, everywhere except in the vicinity of the edges we may 
ignore the existence of these stripes and use equation (AS). 

The calculated charge distribution creates the following potential in the neutral part of 
the sample (lyl e b / 2  - 6'): 

~ ( y ' )  dy', Y ' - Y  
Y' + Y 

Substitution of equation (AS) into equation (A91 gives us the expression (19). 

References 

[ I ]  Halperin B I 1982 Phys. Rev. B 25 2185 
121 van Son P C and Klapwijk T M 1990 Europhys. Lett. 12 429 
131 Ando T, Fowler A and Stem F 1982 Rev. Mod. Phys. 54 437 
[4] Pelrosyan S G and Shik A Y 1989 Sov. Phys.-JETP 69 1261 
[SI MacDonald A H, Rice T M and Brinkman W F 1983 Phys. Rev. B 28 3648 
[a] Chklovskiii D B, ShklovsUii B I and Clazman L I 1992 Pkys. Rev. B 46 4026 
171 Gerhardts R R and Gudmundsson V 1988 SolidSmre C o n "  67 845 
[8] Pfannkuche D and Hajdn J 1992 Phys. Rev. B 46 7032 
[9] Pudalov V M and SemenchhUi S G 1985 JETP Lett. 42 232 

[ I O ]  Kent A 1. McKitterick D I, Challis L I, Hawkcr P. Melior C J and Henini M 1992 Phys. Rev. Len. 69 1684 
[ I  I] McKitterick D J, Shik A, Ken[ A J and Henini M Phys. Rev. B submitted 
[I21 Tricomi F G 1956 Integral Equations (New York Intencience) 


